Optimization

Homework 2 Solutions

1.

(a). The value of x^{*} (in terms of a, b and c) that minimizes f is $x^{*}=\mathrm{b} / \mathrm{a}$.
(b). We have $f^{\prime}(x)=\mathrm{a} x-\mathrm{b}$. Therefore, the recursive equation for the DDS algorithm is $x^{(\mathrm{k}+1)}=x^{(\mathrm{k})}-\alpha\left(\mathrm{a} x^{(\mathrm{k})}-\mathrm{b}\right)=(1-\alpha \mathrm{a}) x^{(\mathrm{k})}+\alpha \mathrm{b}$.
(c). Let $\bar{x}=\lim _{\mathrm{k} \rightarrow \infty} x^{(\mathrm{k})}$. Taking limits of both sides of $x^{(\mathrm{k}+1)}=x^{(\mathrm{k})}-\alpha\left(\mathrm{a} x^{(\mathrm{k})}-\mathrm{b}\right)$ (from part b), we get $\bar{x}=\bar{x}-\alpha\left(\mathrm{a} x^{(\mathrm{k})}-\mathrm{b}\right)$. Hence, we get $\bar{x}=\mathrm{b} / \mathrm{a}=x^{*}$.
(d). To find the order of convergence, we compute

$$
\begin{aligned}
\frac{\left|\mathbf{x}^{(\mathbf{k}+1)}-\mathbf{b} / \mathbf{a}\right|}{\left|\mathbf{x}^{(k)}-\mathbf{b} / \mathbf{a}\right|^{\mathbf{p}}} & =\frac{\left|(1-\alpha a) \mathbf{x}^{(\mathbf{k})}+\alpha \mathbf{b}-\mathbf{b} / \mathbf{a}\right|}{\left|\mathbf{x}^{(k)}-\mathbf{b} / \mathbf{a}\right|^{\mathbf{p}}} \\
& =\frac{\left|(1-\alpha a) \mathbf{x}^{(\mathbf{k})}-(1-\alpha a) \mathbf{b} / \mathbf{a}\right|}{\left|\mathbf{x}^{(k)}-\mathbf{b} / \mathbf{a}\right|^{\mathbf{p}}}=|1-\alpha a|\left|\mathrm{x}^{(k)}-\mathrm{b} / \mathrm{a}\right|^{1-\mathrm{p}} .
\end{aligned}
$$

Let $z^{(\mathrm{k})}=|1-\alpha \mathrm{a}|\left|\mathrm{x}^{(\mathrm{k})}-\mathrm{b} / \mathrm{a}\right|^{1-\mathrm{p}}$. Note that $z^{(\mathrm{k})}$ converges to a finite nonzero number if and only if $p=1$ (if $p<1$, then $z^{(\mathrm{k})} \rightarrow 0$, and if $p>1$, then $z^{(\mathrm{k}}$ $\rightarrow \infty)$. Therefore, the order of convergence of $\left\{x^{(k)}\right\}$ is 1 .
(e). Let $y^{(\mathrm{k})}=\left|\mathrm{x}^{(\mathrm{k})}-\mathrm{b} / \mathrm{a}\right|$. From part d , after some manipulation we obtain $y^{(\mathrm{k}+1)}=|1-\alpha \mathrm{a}| y^{(\mathrm{k})}=|1-\alpha \mathrm{a}|^{\mathrm{k}+1} y^{(0)}$. The sequence $\left\{x^{(\mathrm{k})}\right\}$ converges (to b/a) if and only if $y^{(\mathrm{k})} \rightarrow 0$. This holds if and only if $|1-\alpha \mathrm{a}|<1$, which is equivalent to $0<\alpha<2 / a$.
2.
(a). We have $f(x)=\|A x-b\|^{2}=(A x-b)^{T}(A x-b)$

$$
=\left(x^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}-\mathrm{b}^{\mathrm{T}}\right)(\mathrm{A} x-\mathrm{b})=x^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{~A}\right) x-2\left(\mathrm{~A}^{\mathrm{T}} \mathrm{~b}\right) x+\mathrm{b}^{\mathrm{T}} \mathrm{~b} .
$$

which is a quadratic function. The gradient is given by $\nabla f(x)=2\left(\mathrm{~A}^{\mathrm{T}} \mathrm{A}\right)$ $x-2\left(\mathrm{~A}^{\mathrm{T}} \mathrm{b}\right)$ and the Hessian is given by $F(x)=2\left(\mathrm{~A}^{\mathrm{T}} \mathrm{A}\right)$.
(b). The fixed step size gradient algorithm for solving the above optimization problem is given by $x^{(\mathrm{k})}=x^{(\mathrm{k})}-\alpha\left(2\left(\mathrm{~A}^{\mathrm{T}} \mathrm{A}\right) x^{(\mathrm{k})}-2 \mathrm{~A}^{\mathrm{T}} \mathrm{b}\right)$

$$
=x^{(\mathrm{k})}-2 \alpha \mathrm{~A}^{\mathrm{T}}\left(\mathrm{~A} x^{(\mathrm{k})}-\mathrm{b}\right)
$$

(c). The largest range of values for α such that the algorithm in part b converges to the solution of the problem is given by $0<\alpha<\frac{2}{\lambda \max \left(2 A^{\mathrm{T}} \mathrm{A}\right)}=\frac{1}{4}$.
3. The steepest descent algorithm applied to the quadratic function f has the form $x^{(\mathrm{k}+1)}=x^{(\mathrm{k})}-\alpha_{\mathrm{k}} g^{(\mathrm{k})}=x^{(\mathrm{k})}-\frac{\mathrm{g}^{(\mathrm{k}) \mathrm{T}} \mathrm{g}^{(\mathrm{k})}}{\mathrm{g}^{(\mathrm{k})} \mathrm{Q} g^{(\mathrm{k})}} g^{(\mathrm{k})}$.
\Rightarrow : if $x^{(1)}=\mathrm{Q}^{-1} \mathrm{~b}$, then $\mathrm{Q}^{-1} \mathrm{~b}=x^{(0)}-\alpha_{0} g^{(0)}$.
Rearranging he above yields $\mathrm{Q} x^{(0)}-\mathrm{b}=\alpha_{0} \mathrm{Q} g^{(0)}$.
Since $g^{(0)}=\mathrm{Q} x^{(0)}-\mathrm{b} \neq 0$, we have $\mathrm{Q} g^{(0)}=\frac{1}{\alpha_{0}} g^{(0)}$.
Which means that $g^{(0)}$ is an eigenvector of Q (with corresponding eigenvalue $\frac{1}{\alpha_{0}}$).
$\Leftarrow:$ By assumption, $\mathrm{Q} g^{(0)}=\lambda g^{(0)}$. Where $\lambda \in \mathrm{R}$. We want to show that $\mathrm{Q} x^{(1)}=\mathrm{b}$. We

$$
\text { have } \begin{aligned}
\mathrm{Q} x^{(1)} & =\mathrm{Q}\left(x^{(0)}-\frac{\mathrm{g}^{(0) \mathrm{T}} \mathrm{~g}^{(0)}}{\mathrm{g}^{(0) \mathrm{T}} \mathrm{Qg}{ }^{(0)}} g^{(0)}\right) . \\
& =\mathrm{Q} x^{(0)}-\frac{1}{\lambda} \frac{\mathrm{~g}^{(0) \mathrm{T}} \mathrm{~g} \mathrm{~g}^{(0)}}{\mathrm{g}^{(0) \mathrm{T}} \mathrm{~g}^{(0)}} \mathrm{Q} g^{(0)} . \\
& =\mathrm{Q} x^{(0)}-g^{(0)}=\mathrm{b} .
\end{aligned}
$$

4.

For the given algorithm we have $\gamma_{\mathrm{k}}=\beta(2-\beta)\left(\frac{\left(\mathrm{g}^{(k) T} \mathrm{~g}^{(\mathrm{k})}\right)^{2}}{\left(\mathrm{~g}^{(\mathrm{k}) \mathrm{T}} \mathrm{g}^{(\mathrm{k})}\right)\left(\mathrm{g}^{(\mathrm{k}) \mathrm{T}} \mathrm{Q}^{-1} \mathrm{~g}^{(\mathrm{k})}\right)}\right)$.
If $0<\beta<2$, then $\beta(2-\beta)>0$, and by Lemma 8.2, $\gamma_{\mathrm{k}} \geq \beta(2-\beta)\left(\frac{\lambda \min (\mathrm{Q})}{\lambda \max (\mathrm{Q})}\right)>0$.
which implies that $\sum_{\mathrm{k}=0}^{\infty} \gamma_{\mathrm{k}}=\infty$. Hence, by Theorem 8.1, $x^{(\mathrm{k})} \rightarrow x^{*}$ for any $x^{(0)}$.
If $\beta \leq 0$ or $\beta \geq 0$, then $\beta(2-\beta) \leq 0$, and by Lemma 8.2 ,

$$
\gamma_{\mathrm{k}} \leq \beta(2-\beta)\left(\frac{\lambda \min (\mathrm{Q})}{\lambda \max (\mathrm{Q})}\right)<0 .
$$

By Lemma 8.1, $V\left(x^{(\mathrm{k})}\right) \geq V\left(x^{(0)}\right)$. Hence, if $x^{(0)} \neq x^{*}$, then $\left\{V\left(x^{(\mathrm{k})}\right)\right\}$ does not converge to 0 , and consequently $x^{(\mathrm{k})}$ does not converge to x^{*}.
5.

By Lemma 8.1, $V\left(x^{(\mathrm{k}+1)}\right)=\left(1-\gamma_{\mathrm{k}}\right) V\left(x^{(\mathrm{k})}\right)$ for all k . Note that the algorithm has a descent property if an only if $V\left(x^{(\mathrm{k}+1)}\right)<V\left(x^{(\mathrm{k})}\right)$ whenever $g^{(\mathrm{k})} \neq 0$. Clearly, whenever $g^{(\mathrm{k})} \neq 0, V\left(x^{(\mathrm{k}+1)}\right)<V\left(x^{(\mathrm{k})}\right)$ if and only if $1-\gamma_{\mathrm{k}}<1$. The desired result follows immediately.
6.
(a). $x^{(\mathrm{k}+1)}=x^{(\mathrm{k}+1)}-F\left(x^{(\mathrm{k})}\right)^{-1} g^{(\mathrm{k})} \cdot \nabla f(x)=\left[\begin{array}{c}-400 \mathrm{x}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)-2\left(1-\mathrm{x}_{1}\right) \\ 200\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)\end{array}\right]$.
$F(x)=\left[\begin{array}{cc}-400 \mathrm{x}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)+800 \mathrm{x}_{1}{ }^{2}+2 & -400 \mathrm{x}_{1} \\ -400 \mathrm{x}_{1} & 200\end{array}\right]$.
$k=0, x^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right], g^{(0)}=\nabla f\left(x^{(0)}\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right], F\left(x^{(0)}\right)>0$.
$x^{(1)}=x^{(0)}-F\left(x^{(0)}\right)^{-1} g^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]=x^{(0)}, g^{(1)}=\nabla f\left(x^{(1)}\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Hence, $x^{(0)}$ is a global minimizer of f.
(b). $x^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \nabla f(x)=\left[\begin{array}{c}-400 \mathrm{x}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)-2\left(1-\mathrm{x}_{1}\right) \\ 200\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)\end{array}\right]$.
$F(x)=\left[\begin{array}{cc}-400 \mathrm{x}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)+800 \mathrm{x}_{1}{ }^{2}+2 & -400 \mathrm{x}_{1} \\ -400 \mathrm{x}_{1} & 200\end{array}\right]$.

Iteration 1:

$g^{(0)}=\nabla f\left(x^{(0)}\right)=\left[\begin{array}{c}-2 \\ 0\end{array}\right], F\left(x^{(0)}\right)=\left[\begin{array}{cc}2 & 0 \\ 0 & 200\end{array}\right], F\left(x^{(0)}\right)^{-1}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{200}\end{array}\right]$.
$F\left(x^{(0)}\right)^{-1} g^{(0)}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{200}\end{array}\right]\left[\begin{array}{c}-2 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right] \cdot x^{(1)}=x^{(0)}-F\left(x^{(0)}\right)^{-1} g^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Iteration 2:

$$
\begin{gathered}
g^{(1)}=\nabla f\left(x^{(1)}\right)=\left[\begin{array}{c}
400 \\
-200
\end{array}\right], F\left(x^{(1)}\right)=\left[\begin{array}{cc}
402 & -400 \\
-400 & 200
\end{array}\right], \\
F\left(x^{(1)}\right)^{-1}=\frac{-1}{79600}\left[\begin{array}{cc}
200 & 400 \\
400 & 402
\end{array}\right] . \\
F\left(x^{(1)}\right)^{-1} g^{(1)}=\frac{-1}{79600}\left[\begin{array}{cc}
200 & 400 \\
400 & 402
\end{array}\right]\left[\begin{array}{c}
400 \\
-200
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] . \\
x^{(2)}=x^{(1)}-F\left(x^{(1)}\right)^{-1} g^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{gathered}
$$

(c). Use the gradient algorithm $x^{(k+1)}=x^{(k)}-\alpha^{(k)} g^{(k)}$.
$a^{(0)}=\alpha^{(1)}=0.05$
$x^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right] ., \quad \nabla f(x)=\left[\begin{array}{c}-400 \mathrm{x}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)-2\left(1-\mathrm{x}_{1}\right) \\ 200\left(\mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}\right)\end{array}\right]$.
Iteration 1:
$g^{(\mathrm{k})}=\nabla f\left(x^{(0)}\right)=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$.
$x^{(1)}=x^{(0)}-\alpha^{(0)} g^{(0)}=\left[\begin{array}{c}0.1 \\ 0\end{array}\right]$.

Iteration 2:

$g^{(1)}=\nabla f\left(x^{(1)}\right)=\left[\begin{array}{c}-1.4 \\ 2\end{array}\right]$.
$x^{(2)}=x^{(1)}-\alpha^{(1)} g^{(1)}=\left[\begin{array}{c}0.17 \\ 0.1\end{array}\right]$.
7. If $x^{(0)}=x^{*}$, we are done. So, assume $x^{(0)} \neq x^{*}$. Since the standard Newton's method reaches the point x^{*} in one step, we have $f\left(x^{*}\right)=f\left(x^{(0)}+Q^{-1} g^{(0)}\right)=\min f\left(x^{*}\right) \leq f\left(x^{(0)}+\alpha Q^{-1} g^{(0)}\right)$.
For any $\alpha \geq 0$, Hence $\alpha_{0}=\arg \min f\left(x^{(0)}+\alpha Q^{-1} g^{(0)}\right)=1$.
Hence, in the case, the modified Newton's algorithm is equivalent to the standard Newton's algorithm and thus $x^{(1)}=x^{*}$,

