Optimization

Homework 2 Solutions

- 1.
- (a). The value of x^* (in terms of a, b and c) that minimizes f is $x^* = b/a$.
- (b). We have f'(x) = ax-b. Therefore, the recursive equation for the DDS algorithm is $x^{(k+1)} = x^{(k)} \alpha(a x^{(k)} b) = (1 \alpha a) x^{(k)} + \alpha b$.
- (c). Let $\bar{x} = \lim_{k \to \infty} x^{(k)}$. Taking limits of both sides of $x^{(k+1)} = x^{(k)} \alpha(a x^{(k)} b)$

(from part b), we get $\bar{x} = \bar{x} - \alpha(a x^{(k)} - b)$. Hence, we get $\bar{x} = b/a = x^*$.

(d). To find the order of convergence, we compute

$$\begin{split} \frac{|\mathbf{x}^{(\mathbf{k}+1)}-\mathbf{b}/\mathbf{a}|}{|\mathbf{x}^{(\mathbf{k})}-\mathbf{b}/\mathbf{a}|^{p}} &= \frac{|(1-\alpha a)\mathbf{x}^{(\mathbf{k})}+\alpha b-\mathbf{b}/\mathbf{a}|}{|\mathbf{x}^{(\mathbf{k})}-\mathbf{b}/\mathbf{a}|^{p}} \\ &= \frac{|(1-\alpha a)\mathbf{x}^{(\mathbf{k})}-(1-\alpha a)\mathbf{b}/\mathbf{a}|}{|\mathbf{x}^{(\mathbf{k})}-(1-\alpha a)\mathbf{b}/\mathbf{a}|} = |1-\alpha a||\mathbf{x}^{(\mathbf{k})}-\mathbf{b}/\mathbf{a}|^{1-p} \end{split}$$

Let $z^{(k)} = |1 - \alpha a| |x^{(k)} - b/a|^{1-p}$. Note that $z^{(k)}$ converges to a finite nonzero number if and only if p=1 (if p<1, then $z^{(k)} \rightarrow 0$, and if p>1, then $z^{(k)} \rightarrow \infty$). Therefore, the order of convergence of { $x^{(k)}$ } is 1.

- (e). Let $y^{(k)} = |x^{(k)} b/a|$. From part d, after some manipulation we obtain $y^{(k+1)} = |1 - \alpha a| y^{(k)} = |1 - \alpha a|^{k+1} y^{(0)}$. The sequence $\{x^{(k)}\}$ converges (to b/a) if and only if $y^{(k)} \rightarrow 0$. This holds if and only if $|1 - \alpha a| < 1$, which is equivalent to $0 < \alpha < 2/a$.
- 2.
- (a). We have $f(x) = ||Ax-b||^2 = (Ax-b)^T (Ax-b)$ = $(x^T A^T - b^T) (Ax-b) = x^T (A^T A) x - 2(A^T b) x + b^T b$. which is a quadratic function. The gradient is given by $\nabla f(x) = 2(A^T A)$ $x - 2(A^T b)$ and the Hessian is given by $F(x) = 2(A^T A)$.
- (b). The fixed step size gradient algorithm for solving the above optimization problem is given by $x^{(k)} = x^{(k)} - \alpha(2(A^{T}A) x^{(k)} - 2A^{T}b)$ $= x^{(k)} - 2\alpha A^{T} (Ax^{(k)} - b)$.
- (c). The largest range of values for α such that the algorithm in part b converges to the solution of the problem is given by $0 < \alpha < \frac{2}{\lambda \max(2A^TA)} = \frac{1}{4}$.
- 3. The steepest descent algorithm applied to the quadratic function *f* has the form $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)} = x^{(k)} - \frac{g^{(k)T}g^{(k)}}{g^{(k)T}Qg^{(k)}} g^{(k)}.$

⇒: if $x^{(1)} = Q^{-1}b$, then $Q^{-1}b = x^{(0)} - \alpha_0 g^{(0)}$. Rearranging he above yields $Qx^{(0)} - b = \alpha_0 Qg^{(0)}$. Since $g^{(0)} = Qx^{(0)} - b \neq 0$, we have $Qg^{(0)} = \frac{1}{\alpha_0}g^{(0)}$. Which means that $g^{(0)}$ is an eigenvector of Q (with corresponding

eigenvalue $\frac{1}{\alpha_0}$).

⇐: By assumption, $Qg^{(0)} = \lambda g^{(0)}$. Where $\lambda \in \mathbb{R}$. We want to show that $Qx^{(1)} = b$. We have $Qx^{(1)} = Q(x^{(0)} - \frac{g^{(0)T}g^{(0)}}{g^{(0)T}Qg^{(0)}} g^{(0)})$. $= Q x^{(0)} - \frac{1}{\lambda} \frac{g^{(0)T}g^{(0)}}{g^{(0)T}g^{(0)}} Qg^{(0)}$. $= Q x^{(0)} - g^{(0)} = b$.

4.

For the given algorithm we have $\gamma_k = \beta (2 - \beta) (\frac{(g^{(k)T}g^{(k)})^2}{(g^{(k)T}Q^{(k)})(g^{(k)T}Q^{-1}g^{(k)})})$.

If $0 < \beta < 2$, then $\beta (2 - \beta) > 0$, and by Lemma 8.2, $\gamma_k \geq \beta (2 - \beta) (\frac{\lambda \min(Q)}{\lambda \max(Q)}) > 0$.

which implies that $\sum_{k=0}^{\infty} \gamma_k = \infty$. Hence, by Theorem 8.1, $x^{(k)} \rightarrow x^*$ for any $x^{(0)}$. If $\beta \leq 0$ or $\beta \geq 0$, then $\beta (2 - \beta) \leq 0$, and by Lemma 8.2,

 $\gamma_k \leq \beta \left(2 - \beta \right) \left(\frac{\lambda \min(Q)}{\lambda \max(Q)}\right) < 0$.

By Lemma 8.1, $V(x^{(k)}) \ge V(x^{(0)})$. Hence, if $x^{(0)} \ne x^*$, then $\{V(x^{(k)})\}$ does not converge to 0, and consequently $x^{(k)}$ does not converge to x^* .

5.

By Lemma 8.1, $V(x^{(k+1)}) = (1-\gamma_k)V(x^{(k)})$ for all k. Note that the algorithm has a descent property if an only if $V(x^{(k+1)}) < V(x^{(k)})$ whenever $g^{(k)} \neq 0$. Clearly, whenever $g^{(k)} \neq 0$, $V(x^{(k+1)}) < V(x^{(k)})$ if and only if $1-\gamma_k < 1$. The desired result follows immediately.

6.

(a).
$$x^{(k+1)} = x^{(k+1)} - F(x^{(k)})^{-1}g^{(k)}$$
. $\nabla f(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$.
 $F(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) + 800x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$.
 $k=0$, $x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $g^{(0)} = \nabla f(x^{(0)}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $F(x^{(0)}) > 0$.

$$x^{(1)} = x^{(0)} - F(x^{(0)})^{-1}g^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = x^{(0)}, \ g^{(1)} = \nabla f(x^{(1)}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Hence, $x^{(0)}$ is a global minimizer of f.

(**b**).
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\nabla f(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$.
 $F(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) + 800x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$.

Iteration 1:

$$g^{(0)} = \nabla f(x^{(0)}) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, F(x^{(0)}) = \begin{bmatrix} 2 & 0 \\ 0 & 200 \end{bmatrix}, F(x^{(0)})^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{200} \end{bmatrix} .$$
$$F(x^{(0)})^{-1} g^{(0)} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{200} \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} . x^{(1)} = x^{(0)} - F(x^{(0)})^{-1} g^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} .$$

Iteration 2:

$$g^{(1)} = \nabla f(x^{(1)}) = \begin{bmatrix} 400 \\ -200 \end{bmatrix}, F(x^{(1)}) = \begin{bmatrix} 402 & -400 \\ -400 & 200 \end{bmatrix},$$
$$F(x^{(1)})^{-1} = \frac{-1}{79600} \begin{bmatrix} 200 & 400 \\ 400 & 402 \end{bmatrix} .$$
$$F(x^{(1)})^{-1} g^{(1)} = \frac{-1}{79600} \begin{bmatrix} 200 & 400 \\ 400 & 402 \end{bmatrix} \begin{bmatrix} 400 \\ -200 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$
$$x^{(2)} = x^{(1)} - F(x^{(1)})^{-1} g^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(c). Use the gradient algorithm $x^{(k+1)} = x^{(k)} - \pmb{\alpha}^{(k)} g^{(k)}$. $\pmb{\alpha}^{(0)} = \pmb{\alpha}^{(1)} = 0.05$ $x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\nabla f(x) = \begin{bmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix}$.

Iteration 1:

$$g^{(k)} = \nabla f(x^{(0)}) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}.$$
$$x^{(1)} = x^{(0)} - \pmb{\alpha}^{(0)} g^{(0)} = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix}.$$

Iteration 2:

$$g^{(1)} = \nabla f(x^{(1)}) = \begin{bmatrix} -1.4 \\ 2 \end{bmatrix}.$$
$$x^{(2)} = x^{(1)} - \alpha^{(1)} g^{(1)} = \begin{bmatrix} 0.17 \\ 0.1 \end{bmatrix}.$$

7. If $x^{(0)} = x^*$, we are done. So, assume $x^{(0)} \neq x^*$. Since the standard Newton's method reaches the point x^* in one step, we have $f(x^*) = f(x^{(0)} + Q^{-1}g^{(0)}) = \min f(x^*) \leq f(x^{(0)} + \alpha Q^{-1}g^{(0)})$. For any $\alpha \geq 0$, Hence $\alpha_0 = \arg \min f(x^{(0)} + \alpha Q^{-1}g^{(0)}) = 1$.

Hence, in the case, the modified Newton's algorithm is equivalent to the standard Newton's algorithm and thus $x^{(1)} = x^*$,